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ABSTRACT
Understanding chemical mechanisms requires estimating dynamical statistics such as expected hitting times, reaction rates, and committors.
Here, we present a general framework for calculating these dynamical quantities by approximating boundary value problems using dynamical
operators with a Galerkin expansion. A specific choice of basis set in the expansion corresponds to the estimation of dynamical quantities
using a Markov state model. More generally, the boundary conditions impose restrictions on the choice of basis sets. We demonstrate how
an alternative basis can be constructed using ideas from diffusion maps. In our numerical experiments, this basis gives results of comparable
or better accuracy to Markov state models. Additionally, we show that delay embedding can reduce the information lost when projecting
the system’s dynamics for model construction; this improves estimates of dynamical statistics considerably over the standard practice of
increasing the lag time.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5063730

I. INTRODUCTION

Molecular dynamics simulations allow chemical mechanisms
to be studied in atomistic detail. By averaging over trajectories, one
can estimate dynamical statistics such as mean first-passage times
or committors. These quantities are integral to chemical rate theo-
ries.1–3 However, events of interest often occur on time scales sev-
eral orders of magnitude longer than the time scales of microscopic
fluctuations. In such cases, collecting chemical-kinetic statistics by
integrating the system’s equations of motion and directly comput-
ing averages (sample means) requires prohibitively large amounts of
computational resources.

The traditional way to address this separation in time scales
was through theories of activated processes.2,4 By assuming that
the kinetics are dominated by passage through a single transition
state, researchers were able to obtain approximate analytical forms
for reaction rates and related quantities. These expressions can be
connected with microscopic simulations by evaluating contribut-
ing statistics, such as the potential of mean force and the diffusion

tensor.5–7 However, many processes involve multiple reaction path-
ways, such as the folding of larger proteins.8,9 In these cases, it may
not be possible in practice, or even in principle, to represent the sys-
tem in a way that the assumptions underlying theories of activated
processes are reasonable.

More recently, transition path sampling algorithms, which
focus sampling on the pathways connecting metastable states, have
been used to estimate rates.10,11 Given such trajectories, dynamical
statistics, such as committors, can be learned.12,13 Short trajecto-
ries reaching the metastable states can be harvested efficiently, but
sampling long trajectories, especially those including multiple inter-
mediates, becomes difficult.14,15 Another approach is to use splitting
schemes, which aim to efficiently direct sampling by intelligently
splitting and reweighting short trajectory segments.16–25 Some of
these methods can yield results that are exact up to statistical preci-
sion, with minimal assumptions about the dynamics.20–25 However,
the efficiency of these schemes is generally dependent on a rea-
sonable choice of low-dimensional collective variable (CV) space: a
projection of the system’s phase space. Not only can this choice be
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nonobvious,12 but it can also be statistic specific. Moreover, starting
and stopping the molecular dynamics many times based on the val-
ues of the CVs may be impractical depending on the implementation
of the molecular dynamics engine and the overhead associated with
computational communication.

A third approach is the construction of Markov state mod-
els (MSMs).26–28 Here, the dynamics of the system are modeled as
a discrete-state Markov chain with state-to-state transition prob-
abilities estimated from previously sampled data. Projecting the
dynamics onto a finite-dimensional model introduces a system-
atic bias, although this bias goes to zero in an appropriate limit
of infinitely many states.29 While MSMs were initially developed
as a technique for approximating the slowest eigenmodes of a sys-
tem’s dynamics,26 MSMs can also be used to calculate dynami-
cal statistics for the study of kinetics.30–32 Since MSM construc-
tion only requires time pairs separated by a single lag time, one
has more freedom in how one generates the molecular dynamics
data. In particular, if the lag time is sufficiently short, MSMs can
be used to estimate rates even in the absence of full reactive tra-
jectories. Constructing an efficient MSM requires projection onto
CVs, and the systematic error in the resulting estimates can depend
strongly on how they are defined. However, the CV space can gen-
erally be higher dimensional since it is only used to define Markov
states.

It has been shown that calculating the system’s eigenmodes
with MSMs can be generalized to a basis expansion of the eigen-
modes using an arbitrary basis set.29,33,34 In this paper, we show
that a similar generalization is possible for other dynamical statis-
tics. Rather than solving eigenproblems, these quantities solve lin-
ear boundary value problems. This raises additional challenges:
not only do the solutions obey specific boundary conditions, but
the resulting approximations are also sensitive to the choice of
lag time. We provide numerical schemes to address these difficul-
ties.

We organize our work as follows. In Sec. II, we give background
on the transition operator and review both MSMs and more general
schemes for data-driven analysis of the spectrum of dynamical oper-
ators. We then continue our review with the connection between
operator equations and chemical kinetics in Sec. III. In Sec. IV, we
present our formalism. We discuss the choice of basis set in Sec. V
and introduce a new algorithm for constructing basis sets that obey
the boundary conditions our formalism requires. In Sec. VI, we show
that delay embedding can recover information lost in projecting the
system’s dynamics onto a few degrees of freedom, negating the need
for increasing the scheme’s lag time to enforce Markovianity. We
then demonstrate our algorithm on a collection of long trajecto-
ries of the Fip35 WW domain dataset in Sec. VII and conclude in
Sec. VIII.

II. BACKGROUND
Many key quantities in chemical kinetics can be expressed

through solutions to linear operator equations. Key to this formal-
ism is the transition operator. We begin by assuming that the sys-
tem’s dynamics are given by a Markov process ξ(t ) that is time-
homogeneous, i.e., that the dynamics are time-independent. We do
not put any restrictions on the nature of the system’s state space. For

example, if ξ is a diffusion process, the state space could be the space
of real coordinates, Rn. Similarly, for a finite-state Markov chain, it
would be a finite set of configurations. We also do not assume that
the dynamics are reversible or that the system is in a stationary state
unless specifically noted.

The transition operator at a lag time of s is defined as

Ksf (x) = E[f (ξ(s)
)∣ξ(0)

= x], (1)

where f is a function on the state space and E denotes expectation.
Note that due to time-homogeneity, we could just as easily have
defined the transition operator with the time pair (ξ(t), ξ(t+s)

) in

place of (ξ(0), ξ(s)
). Depending on the context in question, Ks may

also be referred to as the Markov or Koopman operator.35,36 We use
the term transition operator as it is well established in the mathemat-
ical literature and stresses the notion that Ks is the generalization of
the transition matrix for finite-state Markov processes. For instance,
the requirement that the rows of a transition matrix sum to one
generalizes to

Ks1 = E[1∣ξ(0)
= x] = 1. (2)

Studying the transition operator provides, in principle, a route to
analyzing the system’s dynamics. Unfortunately, Ks is often either
unknown or too complicated to be studied directly. This has moti-
vated research into data-driven approaches that instead treat Ks
indirectly by analyzing sampled trajectories.

A. Markov state modeling
One approach to studying chemical dynamics through the tran-

sition operator is the construction of Markov state models.26–28 In
this technique, one constructs a Markov chain on a finite state space
to model the true dynamics of the system. The transition matrix of
this Markov chain is then taken as a model for the true transition
operator.

To construct an MSM from trajectory data, we partition the sys-
tem’s state space into M nonoverlapping sets. We refer to these sets
as Markov states and denote them as Si. Now, let µ be an arbitrary
probability measure. If the system is initially distributed according
to µ, the probability of transitioning from a set Si to Sj after a time s
is given by

Pij =
∫ 1Si(x)Ks1Sj(x)µ(dx)

∫ 1Si(y)µ(dy)
, (3)

where 1Si is the indicator function

1Si(x) = {
1 for x in Si
0 otherwise. (4)

Here, ∫ f (x)µ(dx) is the expectation with respect to the probability
measure µ.37 When µ has a probability density function, this inte-
gral is the same as the integral against the density, and in a finite
state space, it would be a weighted average over states. This formal-
ism lets us treat both continuous and discrete state spaces with one
notation.
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Because the sets Si partition the state space, a simple calculation
shows that the elements in each row of Pij sum to one. Pij therefore
defines a transition matrix for a finite-state Markov process, where
state i corresponds to the set Si. The dynamics of this process are a
model for the true dynamics, and Pij is a model for the transition
operator.

To build this model, we construct an estimate of Pij from sam-
pled data. A simple approach is to collect a dataset consisting of N
time pairs, (Xn, Yn). Here, the initial point Xn is drawn from µ, and
Yn is collected by starting at Xn and propagating the dynamics for
time s. Note that since the choice of µ in (3) is relatively arbitrary,
it can be defined implicitly through the sampling procedure. For
instance, one can construct a dataset by extracting all pairs of points
separated by the lag time s from a collection of trajectories; since we
have assumed the dynamics are time-homogeneous, the actual phys-
ical time at which Xn was collected does not matter. We then define
µ to be the measure from which our initial points X(0)

n were sampled.
With this dataset, Pij is now approximated as

P̄ij =
∑

N
n=1 1Sj(Yn)1Si(Xn)

∑
N
m=1 1Si(Xm)

. (5)

Like Pij, (5) defines a valid transition matrix. This is not the only
approach for constructing estimates of Pij. One commonly used
approach modifies this procedure to ensure that P̄ij gives reversible
dynamics. In this approach, one adds a self-consistent iteration that
seeks to find the reversible transition matrix with the maximum
likelihood given the data.38,39

The MSM approach has many attractive features. Since Pij
defines a valid transition matrix, the MSM defines a Markov chain
that can be used as a general model for the dynamics. This model
can then be simplified by merging the Markov sets to improve
interpretability.28,40,41 MSMs can also be used to estimate spec-
tral information associated with the transition operator, such as
its eigenvalues and eigenvectors, as we discuss in further detail in
Sec. II B.26,27,29,39 Finally, MSMs can be used to calculate a wide class
of dynamical quantities, including committors, reaction rates, and
expected hitting times.30–32 Importantly, as constructing MSMs only
requires datapoints separated by a short lag time, these long-time
dynamical quantities can be evaluated using a collection of short tra-
jectories.42 In this paper, we focus exclusively on the latter applica-
tion and consider MSMs as a technique for calculating the dynamical
quantities required in rate theories.

The accuracy with which Pij approximates Ks depends strongly
on the choice of the sets Si, and choosing good sets is a nontrivial
problem in high-dimensional state spaces.43–47 To address this issue,
states are generally constructed by projecting the system’s state space
onto a CV space. Sets are then defined by either gridding the CV
space or clustering sampled configurations based on the values of
their CVs. Unfortunately, when gridding, the number of states grows
exponentially with the dimension of the CV space. This is not neces-
sarily the case for partitioning schemes based on data clustering, and
the recent work in this direction appears promising.39,48–52 In partic-
ular, recent approaches have used variational principles associated
with the spectrum of Ks to give a quantitative notion of approxi-
mation quality across clustering procedures.34,53–57 However, effec-
tively clustering high-dimensional data is a nontrivial problem,58,59

and constructing an MSM that accurately reflects the dynamics may

still require knowledge of a good, relatively low-dimensional CV
space.43,44,60

B. Data-driven solutions to eigenfunctions
of dynamical operators

A related approach to characterizing chemical systems is to
estimate the eigenfunctions and eigenvalues of operators associated
with the system’s dynamics from sampled data.36 These separate
the dynamics by time scale: eigenfunctions with larger eigenval-
ues correlate with the system’s slower degrees of freedom. These
eigenfunctions and eigenvalues can often be approximated from tra-
jectory data, even when the transition operator is unknown. Multiple
schemes that attempt this have been proposed, often independently,
in different fields.26,33,34,61–67 We refer to the family of these tech-
niques using the umbrella term Dynamical Operator Eigenfunction
Analysis (DOEA) for brevity and convenience. In this subsection,
we summarize a simple DOEA scheme for the transition operator
for the reader’s convenience, largely following Ref. 63. We refer the
reader to Ref. 36 for a discussion of other schemes.

Here, we consider the solution to the eigenproblem

Ksψl(x) = λlψl(x). (6)

We approximate ψl as a sum of basis functions �j with unknown
coefficients aj,

ψl(x) =
M
∑
j=1

aj�j(x). (7)

This is an example of the Galerkin approximation of (6),26 a formal-
ism we cover more closely in Sec. IV.

We now assume our data take the form discussed in Sec. II A.
Substituting the basis expansion into (6), multiplying by �i(x), and
taking the expectation against µ, we obtain the matrix equation

M
∑
j=1

Kijaj = λl

M
∑
j=1

Sijaj, (8)

where K ij and Sij are defined as

Kij = ∫ �i(x)Ks�j(x)µ(dx), (9)

Sij = ∫ �i(x)�j(x)µ(dx), (10)

respectively. The matrix elements can be approximated as

K̄ij =
1
N

N
∑
n=1
�i(Xn)�j(Yn), (11)

S̄ij =
1
N

N
∑
n=1
�i(Xn)�j(Xn). (12)

We substitute these approximations into (8) and solve for estimates
of ai and λl. Equation (7) can then be used to give an approximation
for ψl.

DOEA schemes are closely linked to MSMs. Using the indica-
tor functions from Sec. II A is mathematically equivalent to solving
for the eigenfunctions of Pij. Indeed, one of the first uses for MSMs
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was for approximating the eigenfunctions and eigenvalues of the
transition operator.26,29

The use of more general basis sets in DOEA allows information
to be more easily extracted from high-dimensional CV spaces and
gives added flexibility in algorithm design.43,44,61,68,69 For instance,
time-lagged independent component analysis (TICA) corresponds
to a basis of linear functions and is commonly applied as a prepro-
cessing step to generate CVs for MSM construction.43,44,61 Alterna-
tively, variational principles can be exploited to obtain the eigen-
functions of Ks for reversible dynamics (variational approach of
conformation dynamics, VAC)34 and, more generally, for the singu-
lar value decomposition of Ks (the variational approach for Markov
processes, VAMP).54,55 These principles suggest cost functions that
can be used to assess how well a basis recapitulates the spectral
properties of Ks.34,55,70 Furthermore, by directly minimizing these
cost functions, one can construct nonlinear basis sets using machine
learning approaches such as tensor-product algorithms or neural
networks.54,71

While attempts have been made to define a theory of chemical
dynamics purely in terms of the transition operator’s eigenfunctions
and eigenvalues,53 most chemical theories require dynamical quanti-
ties, such as committors and mean first-passage times. In this work,
we show that it is possible to construct estimates of these quanti-
ties using a general basis expansion. Just as DOEA schemes extend
MSM estimates of spectral properties to general basis functions, our
formalism generalizes the MSM estimation of the quantities used in
rate theory.

III. THE GENERATOR AND CHEMICAL KINETICS
Many key quantities in chemical kinetics solve operator equa-

tions acting on functions of the state space. Below, we give a quick
review of this formalism, detailing a few examples of chemically rel-
evant quantities that can be expressed in this manner. These include
statistics such as the mean first-passage time, forward and backward
committors, and autocorrelation times. In particular, many of these
operator equations are examples of Feynman-Kac formulas. For an
in-depth treatment of this formalism, we refer the reader to Refs. 72
and 73.

In this work, we focus on analyzing data gathered from exper-
iments or simulations. We expect the data to consist of a series of
measurements collected at a fixed time interval. Therefore, rather
than considering the dynamics of ξ(t ), we will consider the dynamics
of a discrete-time process Ξ(t ) constructed by recording ξ every ∆t
units of time. If ∆t is sufficiently small, this should not appreciably
change any kinetic quantities.

In the discussion that follows, we choose to work with the
generator of Ξ(t ), defined as

Lf (x) =
K∆tf (x) − f (x)

∆t
, (13)

instead of the transition operator. This makes no mathematical dif-
ference, but using L simplifies the presentation. We also stress that,
with the exception of (24), the equations that follow hold only
for a lag-time of s = ∆t. For larger lag times, i.e., s > ∆t, these
equations only hold approximately. This is discussed further in
Sec. VI.

A. Equations using the generator
We begin by considering the mean first-passage time and for-

ward committor, two central quantities in chemical kinetics.2,74,75

Let A and B be disjoint subsets of state space and let τA be the first
time the system enters A,

τA = min{t ≥ 0∣Ξ(t)
∈ A}. (14)

The mean first-passage time is the expectation of τA, conditioned on
the dynamics starting at x,

mA(x) = E[τA∣Ξ(0)
= x]. (15)

Note that 1/mA(x) is a commonly used definition of the rate.2 The
forward committor is defined as the probability of entering B before
A, conditioned on starting at x,

q+(x) = P[τB < τA∣Ξ(0)
= x]. (16)

Both of these quantities solve operator equations using the
generator. The mean first-passage obeys the operator equation

LmA(x) = −1 for x in Ac,
mA(x) = 0 for x in A.

(17)

Here, Ac denotes the set of all state space configurations not in A.
Equation (17) can be derived by conditioning on the first step of the
dynamics. For all x in Ac, we have

mA(x) = E[τA∣Ξ(0)
= x]

= E[mA(Ξ(∆t)
) + ∆t∣Ξ(0)

= x]

= E[mA(Ξ(∆t)
)∣Ξ(0)

= x] + ∆t

= K∆tmA(x) + ∆t,

where the second line follows from the time-homogeneity of Ξ.
Rearranging then gives (17).

We can show that the forward committor obeys

Lq+(x) = 0 for x in (A ∪ B)c,
q+(x) = 0 for x in A,
q+(x) = 1 for x in B (18)

by similar arguments. We introduce the random variable

1τB<τA = {
1 if τB < τA
0 otherwise. (19)

For all x outside A and B, we can then write

q+(x) = E[1τB<τA ∣Ξ
(0)

= x]

= E[q+(Ξ(∆t)
)∣Ξ(0)

= x]

= K∆tq+(x),

which gives (18) on rearranging.
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B. Expressions using adjoints of the generator
Additional quantities can be characterized using adjoints of the

generator. We reintroduce the sampling measure µ from Sec. II and
define the inner product

⟨u, v⟩ = ∫ u(x)v(x)µ(dx). (20)

Equipped with this inner product, the space of all functions that are
square-integrable against µ forms a Hilbert space that we denote as
L2
µ. The unweighted adjoint of L is the operator L† such that for all

u and v in the Hilbert space,

⟨L†u, v⟩ = ⟨u,Lv⟩. (21)

We now assume that the system has a unique stationary mea-
sure. The change of measure from µ to the stationary measure is
defined as the function π such that

∫ E[f (Ξ(t)
)∣Ξ(0)

= x]π(x)µ(dx) = ∫ f (x)π(x)µ(dx) (22)

or equivalently,

∫ Lf (x)π(x)µ(dx) = 0 (23)

holds for all functions f. As an example, if the dynamics are station-
ary at thermal equilibrium, we might have

π(x)µ(dx)∝ e
−H(x)

kBT dx,

where H(x) is the system’s Hamiltonian, T is the system’s temper-
ature, and kB is the Boltzmann constant. However, this relation is
not necessarily true for general state spaces or for nonequilibrium
stationary states.

The change of measure to the stationary measure can be written
as the solution to an expression withL†. Interpreting (23) as an inner
product, the definition of the adjoint implies

0 = ⟨π,Lf ⟩ = ⟨L†π, f ⟩

for all f, or equivalently,

L†π(x) = 0. (24)

The other equations may use weighted adjoints of L. Let p
be the change of measure from µ to another, currently unspeci-
fied measure. The p-weighted adjoint of L is the operator L†

p such
that

⟨u, pLv⟩ = ⟨L†
pu, pv⟩. (25)

A few manipulations show that the weighted adjoint can be
expressed as

L†
pf (x) =

1
p(x)

L†
(fp)(x). (26)

This reduces to the unweighted adjoint when p(x) = 1.
One example of a formula that uses a weighted adjoint is a rela-

tion for the backward committor. The backward committor is the

probability that, if the system is observed at configuration x and
the system is in the stationary state, the system exited state A more
recently than state B. It satisfies the equation

L†
πq−(x) = 0 for x in (A ∪ B)c,
q−(x) = 1 for x in A,
q−(x) = 0 for x in B. (27)

Finally, we note that some quantities in chemical dynamics
require the solution to multiple operator equations. For instance,
in transition path theory3 the total reactive current and reaction
rate between A and B require evaluating the backward commit-
tor and the forward committor, followed by another application
of the generator. The total reactive current from B to A is given
by

IAB = ∫ q−(x)1C(x)L(1Cc q+)(x)π(x)µ(dx)

− ∫ q−(x)1Cc(x)L(1Cq+)(x)π(x)µ(dx). (28)

Here, C is a set that contains B but not A. The reaction rate constant
is then given by

kAB =
IAB

∫ q−(x)π(x)µ(dx)
. (29)

We derive these expressions in Sec. S3 of the supplementary material
through arguments very similar to those presented in Ref. 76.

Evaluating the integrated autocorrelation time (IAT) of a func-
tion requires estimating π, as well as solving an equation using the
generator. For a function with ∫ f (x)π(x)µ(dx) = 0, the IAT is the
sum over the correlation function

tf = (2
∞

∑
i=0

∫ f (x)Ki∆tf (x)π(x)µ(dx)

∫ (f (x))2π(x)µ(dx)
− 1)∆t (30)

and, using the Neumann series representation77 of the appropriate
pseudoinverse of L, can be expressed as

tf = 2∫
f (x)ω(x)π(x)µ(dx)
∫ f (y)2π(y)µ(dy)

− ∆t, (31)

where ω is the solution to the equation

Lω(x) = f (x) (32)

constrained to have ∫ω(x)π(x)µ(dx) = 0.
Note that although the quantities mentioned above give us

information about the long-time behavior of the system, the for-
malism introduced here only requires information over short time
intervals. This suggests that solving these equations directly could
lead to a numerical strategy for estimating these long-time statistics
from short-time data.

IV. DYNAMICAL GALERKIN APPROXIMATION
Inspired by the theory behind DOEA and MSMs, we seek to

solve the equations in Sec. III in a data-driven manner. We first note
that the equations follow the general form
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Lg(x) = h(x) for x in D,
g(x) = b(x) for x in Dc (33)

or
L†

pg(x) = h(x) for x in D,
g(x) = b(x) for x in Dc.

(34)

Here, D is a set in state space that constitutes the domain, g is the
unknown solution, and h and b are known functions. If b is zero
everywhere or Dc is empty, we say the problem has homogeneous
boundary conditions.

If the generator and its adjoints are known, these equations
can, in principle, be solved numerically.78–80 However, this is gener-
ally not the case, and even if the operators are known, the dimen-
sion of the full state space is often too high to allow numeri-
cal solution. In our approach, we use approximations similar to
(11) and (12) to estimate these quantities from trajectory data.
This procedure only requires collections of short trajectories of the
system and works when the dynamical operators are not known
explicitly.

We explicitly derive the scheme for operator equations using
the generator; the required modifications for equations using an
adjoint require only slight modification, and are discussed at the
end of Secs. IV B and IV C. We construct an approximation of the
operator equation through the following steps:

1. Homogenize boundary conditions: If necessary, rewrite (33) as
a problem with homogeneous boundary conditions using a
guess for g.

2. Construct a Galerkin scheme: Approximate the solution as a
sum of basis functions and convert the result of step 1 into a
matrix equation.

3. Approximate inner products with trajectory averages: Approx-
imate the terms in the Galerkin scheme using trajectory aver-
ages and solve for an estimate of g.

Since we use dynamical data to estimate the terms in a Galerkin
approximation, we refer to our scheme as Dynamical Galerkin
Approximation (DGA).

A. Homogenizing the boundary conditions
First, we rewrite (33) as a problem with homogeneous bound-

ary conditions. This allows us to enforce the boundary conditions
in step 2 by working within a vector space where every function
vanishes at the boundary of the domain. If the boundary condi-
tions are already homogeneous, either because b is explicitly zero
or because D includes all of state space, this step can be skipped.
We introduce a guess function r that is equal to b on Dc. We then
rewrite (33) in terms of the difference between the guess and the true
solution

γ(x) = g(x) − r(x). (35)

This converts (33) into a problem with homogeneous boundary
conditions

Lγ(x) = h(x) −Lr(x) for x in D, (36)
γ(x) = 0 for x in Dc. (37)

A naive guess can always be constructed as

rnaive
(x) = 1Dc(x)b(x), (38)

but if possible, one should attempt to choose r so that γ can
be efficiently expressed using the basis functions introduced in
step 2.

B. Constructing the Galerkin scheme
We now approximate the solution of (36) and (37) via basis

expansion using the formalism of the Galerkin approximation.
Equation (36) implies that

⟨u1D,Lγ⟩ = ⟨u1D, h⟩ − ⟨u1D,Lr⟩ (39)

holds for all u in the Hilbert space L2
µ. This is known as the weak

formulation of (36).81

The space L2
µ is typically infinite dimensional. Consequently,

we cannot expect to ensure that (39) holds for every function in
L2
µ. We therefore attempt to solve (39) only on a finite-dimensional

subspace of L2
µ. To do this, we introduce a set of M linearly indepen-

dent functions denoted as {�1, . . . ,�M} that obey the homogeneous
boundary conditions; we refer to these as the basis functions. The
space of all linear combinations of the basis functions forms a sub-
space in L2

µ which we call the Galerkin subspace, G. By construction,
every function in G obeys the homogeneous boundary conditions.
We now project (39) onto this subspace, giving the approximate
equation

⟨ũ,Lγ̃⟩ = ⟨ũ, h⟩ − ⟨ũ,Lr⟩ (40)

for all ũ in G. Here, γ̃ is an element of G approximating γ. Construct-
ing G using a linear combination of basis functions that obey the
homogeneous boundary conditions ensures that γ̃ obeys the homo-
geneous boundary conditions as well. If we had constructed G using
arbitrary basis functions, this would not be true. As we increase the
dimensionality of G, we expect the error between γ and γ̃ to become
arbitrarily small.

Since ũ is in G, it can be written as a linear combination of basis
functions. Consequently, if

⟨�i,Lγ̃⟩ = ⟨�i, h⟩ − ⟨�i,Lr⟩

holds for all �i, then (40) holds for all ũ. Moreover, the construction
of G implies that there exist unique coefficients aj such that

γ̃(x) =
M
∑
j=1

aj�j(x), (41)

enabling us to write
M
∑
j=1

Lijaj = hi − ri, (42)

where

Lij = ⟨�i,L�j⟩, (43)

hi = ⟨�i, h⟩, (44)
ri = ⟨�i,Lr⟩. (45)
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If the terms in (43)–(45) are known, (42) can be solved for the
coefficients aj, and an estimate of g can be constructed as

g̃(x) = r(x) +
M
∑
j=1

aj�j(x). (46)

Since γ̃ is zero on Dc and r obeys the inhomogeneous boundary
conditions by construction,

g̃ = r(x) = b(x) for x in Dc. (47)

Consequently, our estimate of g obeys the boundary conditions.
A similar scheme can be constructed for equations with a

weighted adjoint L†
p by adding one additional step to the proce-

dure. After homogenizing the boundary conditions, we multiply
both sides of (36) by p. We then proceed as before and obtain (42)
with terms defined as

Lij = ⟨�i, pL†
p�j⟩ = ⟨L�i, p�j⟩, (48)

hi = ⟨�i, ph⟩, (49)

ri = ⟨�i, pL†
pr⟩ = ⟨L�i, pr⟩ (50)

instead of (43), (44), and (45), respectively.

C. Approximating inner products
through Monte Carlo

Solving for aj in (41) requires estimates of the other terms in
(42). In general, these terms cannot be evaluated directly, due to the
complexity of the dynamical operators and the high dimensionality
of these integrals. However, we can estimate these terms using tra-
jectory averages, in the style of the estimates in (11). Let ρ∆t be the
joint probability measure of Ξ(0) and Ξ(∆t ), such that for two sets X
and Y in state space,

∫
X,Y

ρ∆t(dx, dy) = P[Ξ(0)
∈ X,Ξ(∆t)

∈ Y]. (51)

We observe that

⟨u,Lv⟩ =∫ u(x)
E[v(Ξ(∆t)

)∣Ξ(0)
= x] − v(x)

∆t
µ(dx)

=∫ u(x)
v(y) − v(x)

∆t
ρ∆t(dx, dy). (52)

We now assume that we have a dataset of the form described
in Sec. II A, with a lag time of ∆t. Since each pair (Xn, Yn) is a draw
from ρ∆t , (52) can be approximated using the Monte Carlo estimate

⟨u,Lv⟩ = 1
N

N
∑
n=1

u(Xn)
v(Yn) − v(Xn)

∆t
. (53)

Similarly, inner products of the form ⟨u, v⟩ can be estimated as

⟨u, v⟩ =
1
N

N
∑
n=1

u(Xn)v(Xn). (54)

If the Galerkin scheme arose from an equation with a weighted
adjoint, evaluating the expectations in (48) and (50) may require p to
be known a priori. However, if p = π, one can construct an estimate
of π by applying the DGA framework to Eq. (24).

D. Pseudocode
The DGA procedure can thus be summarized as follows:

1. Sample N pairs of configurations (Xn, Yn), where Yn is the con-
figuration resulting from propagating the system forward from
Xn for time ∆t.

2. Construct a set of M basis functions �i obeying the homo-
geneous boundary conditions and, if needed, the guess
function r.

3. Estimate the terms in (42) using the expressions in Sec. IV C.
4. Solve the resulting matrix equations for the coefficients and

substitute them into (46) to construct an estimate of the func-
tion of interest.

Some DGA estimates may require additional manipulation to
ensure physical meaning. For instance, changes of measure and
expected hitting times are nonnegative, and committors are con-
strained to be between zero and one. These bounds are not guar-
anteed to hold for estimates constructed through DGA. To correct
this, we apply a simple postprocessing step and round the DGA esti-
mate to the nearest value in the range. Alternatively, constraints on
the mean of the solution [e.g., that for ω below (32)] can be applied
by subtracting a constant from the estimate.

Finally, many dynamical quantities require the evaluation of
additional inner products. For instance, to estimate the autocorre-
lation time, tf , one must construct approximations to ω and π and
set ω to have zero mean against π(x)µ(dx). One would then evaluate
the numerator and denominator of (31) using (54).

To aid the reader in constructing estimates using this frame-
work, we have written a Python package for creating DGA esti-
mates.82 This package also contains code for constructing the basis
set we introduce in Sec. V. As part of the documentation, we have
included Jupyter notebooks to aid the reader in reproducing the
calculations in this work.

E. Connection with other schemes
As we have previously discussed, the DGA formalism is closely

related to DOEA. Rather than considering the solution for a linear
system, we could construct a Galerkin scheme for the eigenfunc-
tions of L. Since L and Ks have the same eigenfunctions, in the
limit of infinite sampling and an arbitrarily good basis, this would
give equivalent results to the scheme in Sec. II B. DOEA techniques
have also been extended to solve (24).83 A similar algorithm for
addressing boundary conditions has also been suggested in the con-
text of the data-driven study of partial differential equations and
fluid flows.84

Our scheme is also closely related to Markov state modeling. Let
�i be a basis set of indicator functions on disjoint sets Si covering the
state space. Under minor restrictions, applying DGA with this basis
is equivalent to estimating the quantities in Sec. III with an MSM.
We give a more thorough treatment in Sec. S1 of the supplementary
material; here, we quickly motivate this connection by examining
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(43) for this particular choice of basis. We note that we can divide
both sides of (42) by ∫ �i(x)µ(dx) without changing the solution.
For this choice of basis, we would then have

Lij

∫ �i(x)µ(dx)
=

1
∆t

(P − I)ij, (55)

where P is the MSM transition matrix defined in (3) and I is the
identity matrix. Because of this similarity, we refer to a basis set
constructed in this manner as an “MSM” basis.

V. BASIS CONSTRUCTION USING DIFFUSION MAPS
One natural route to improving the accuracy of DGA

schemes is to improve the set of basis functions �i, thus reduc-
ing the error caused by projecting the operator equation onto
the finite-dimensional subspace. Various approaches have been
used to construct basis sets for describing dynamics in DOEA
schemes.43,44,61,68,69 However, if Dc is nonempty, these functions can-
not be used in DGA. In particular, the linear basis in TICA can-
not be used. Here, we provide a simple method for constructing
basis functions with homogeneous boundary conditions based on
the technique of diffusion maps.85,86

Diffusion maps are a technique shown to have success in find-
ing global descriptions of molecular systems from high-dimensional
input data.87–92 A simple implementation proceeds by constructing
the transition matrix

PDMAP
mn =

Kε(xm, xn)

∑n Kε(xm, xn)
, (56)

where Kε is a kernel function. This function decays exponentially
with the distance between datapoints xm and xn at a rate set by ε.
Multiple choices of Kε exist; we give the algorithm used to construct
the kernel in Sec. S2 of the supplementary material. The eigenvec-
tors of PDMAP with M highest positive eigenvalues were historically
used to define a new coordinate system for dimensionality reduction.
They can also be used as a basis set for DOEA and similar analy-
ses.66,68,93 Here, we extend this line of research, showing that diffu-
sion maps can also be used to construct basis functions that obey
homogeneous boundary conditions on arbitrary sets as required
for use in DGA. We note that the diffusion process represented
by PDMAP is not intended as an approximation of the dynamics,
but rather as a tool for building the basis functions �i. In particu-
lar, while the PDMAP matrix is typically reversible, this imposes no
reversibility constraint in the DGA scheme using the basis derived
from PDMAP.

To construct a basis set that obeys nontrivial boundary condi-
tions, we first take the submatrix of PDMAP such that xm, xn ∈ D. We
then calculate the eigenvectors 'i of this submatrix that have the M
highest positive eigenvalues and take as our basis

�i(x) = {
φi(x) for x in D,
0 otherwise.

(57)

In addition to allowing us to define a basis set, PDMAP gives a nat-
ural way of constructing guess functions that obey the boundary
conditions. Since (56) is a transition matrix, it corresponds to a
discrete Markov chain on the data. Therefore, we can construct

guesses by solving analogs to (33) using the dynamics specified by
the diffusion map. For equations using the generator, we solve the
problem

∑
n
(PDMAP

− I)mnr(xn) = h(xm) for m in D, (58)

r(xm) = b(xm) for m in Dc, (59)

where I is the identity matrix. Here, the sum runs over all datapoints,
not just those in D. The resulting estimate obeys the boundary
conditions for all datapoints sampled in Dc.

Equation (58) can also be used to construct guesses for equa-
tions using weighted adjoints. In principle, one could replace PDMAP

with its weighted adjoint against p and solve the corresponding
equation. However, rn still obeys the boundary conditions irrespec-
tive of the weighted adjoint used. We therefore take the adjoint
of PDMAP with respect to its stationary measure. Since the Markov
chain associated with the diffusion map is reversible,85 PDMAP is
self-adjoint with respect to its stationary measure and we again
solve (58). We discuss how to perform out-of-sample extension on
the basis and the guess functions in Sec. S2 of the supplementary
material.

To help the reader visualize a diffusion-map basis, we analyze
a collection of datapoints sampled from the Müller-Brown poten-
tial,94 scaled by 20 so that the barrier height is about 7 energy
units; we set kBT = 1. This potential is sampled using a Brown-
ian particle with an isotropic diffusion coefficient of 0.1 using the
BAOAB integrator for overdamped dynamics with a time step of
0.01 time units.95 Trajectories are initialized out of the stationary
measure by uniformly picking 10 000 starting locations on the inter-
val x ∈ (−2.5, 1.5), y ∈ (−2.5, 1.5). Initial points with potential
energies larger than 100 are rejected and resampled to avoid numer-
ical artifacts. Each trajectory is then constructed by simulating the
dynamics for 500 steps, saving the position every 100 steps. We then
define two states A and B (red and cyan dashed contours in Fig. 1,
respectively) and construct the basis and guess functions required
for the committor. The results, plotted in Fig. 1, demonstrate that
the diffusion-map basis functions are smoothly varying with global
support.

A. Basis set performance in high-dimensional
CV spaces

We now test the effect of dimension on the performance of
the basis set by attempting to calculate the forward committor and
total reactive flux for a series of toy systems based on the model
mentioned above. To be able to vary the dimensionality of the sys-
tem, we add up to 18 harmonic “nuisance” degrees of freedom.
Specifically,

U(x, y, z3, . . . , zd) = UMB(x, y) +
d
∑
l=3

z2
l , (60)

where UMB is the scaled Müller-Brown potential discussed above.
We compare our results with references computed by a grid-based
scheme described in the supplementary material. Our reference
for the committor is plotted in Fig. 3(a). We initialize the x and
y dimensions as discussed above; the initial values of the nui-
sance coordinates were drawn from their marginal distributions at
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FIG. 1. Example basis and guess functions constructed by the diffusion-map basis on the scaled Müller-Brown potential. (a) The potential energy surface. Black contour lines
indicate the potential energy in units of kBT ; red and cyan dotted contours indicate the boundaries of states A and B, respectively. (b) An MSM clustering with 500 sets on
the domain; the color scale is the same as in (a). Each MSM basis function is one inside a cell and zero otherwise. Sets inside states A and B are not shown to emphasize
the boundary conditions. (c) Scatter plot of the guess function for the committor for hitting B before A, constructed using (58). [(d)–(f)] Scatter plots of the first three basis
functions constructed according to (57).

equilibrium. We then sampled the system using the same procedure
as before.

Throughout this section and all subsequent numerical compar-
isons, we compare the diffusion-map basis with a basis of indicator
functions. Since, with minor restrictions, using a basis of indicator
functions is equivalent to calculating the same dynamical quantities
using a MSM, we estimate committors, mean first-passage times,
and stationary distributions by constructing a MSM in PyEMMA
and using established formulas.31,32,76 In general, it is not our inten-
tion to compare an optimal diffusion-map basis to an optimal MSM
basis. Multiple diffusion-map and clustering schemes exist, and per-
forming an exhaustive comparison would require comparison over
multiple methods and hyperparameters. We leave such a compari-
son for future work and only seek to present reasonable examples of
both schemes.

MSM clusters are constructed using k-means, as implemented
in PyEMMA.60 While MSMs are generally constructed by clustering
points globally, this does not guarantee that a given clustering satis-
fies a specific set of boundary conditions. Consequently, we modify
the set definition procedure slightly.

We first construct M clusters on the domain D and then clus-
ter Dc separately. The number of states inside Dc is chosen so that
states inside Dc have approximately the same number of samples on
average as states in the domain. For the current calculation, this cor-
responded to approximately one state inside set A or B for every five
states inside the domain; we round to a ratio of 1/5 for numerical
simplicity. We note that clustering on the interior of Dc does not
affect calculated committors or mean first-passage times. We use 500
basis functions for both the MSM and diffusion-map basis sets. Plots
supporting this choice can be found in Sec. S5 of the supplementary
material.

In modern Markov state modeling, one commonly constructs
the transition matrix only over a well-connected subset of states
named the active set.39,96 We have followed this practice and
excluded points outside the active set from any error analyses of the

resulting MSMs. We believe this gives the MSM basis an advantage
over the diffusion-map basis in our comparisons, as we are explic-
itly ignoring points where it fails to provide an answer and would
presumably give poor results.

It is also common to ensure that the resulting matrix obeys
detailed balance through a maximum likelihood procedure.38,39

FIG. 2. Comparison of basis performance as the dimensionality of the toy sys-
tem increases. (a) The average error in the forward committor between states
B and A in Fig. 3 for both the MSM and the diffusion-map basis function, as a
function of the number of nuisance degrees of freedom. (b) Estimated reactive
flux using both the MSM and the diffusion-map basis function as a function of the
same. In both plots, shading indicates the standard deviation over 30 datasets.
The dotted line in (b) is the reactive flux as calculated by an accurate reference
scheme.
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FIG. 3. Example forward committors calculated using the diffusion-map and MSM bases on a high-dimensional toy problem. The system is the same as in Fig. 1, with 18
additional nuisance dimensions. (a) Forward committor function calculated using an accurate grid-based scheme. The black lines indicate the contours of free energy in the
x and y coordinates, and the red and cyan dashed contours indicate the two states. Every subsequent dimension has a harmonic potential with a force constant of 2. [(b) and
(c)] Estimated forward committor constructed using the diffusion map and MSM bases, respectively.

We choose not to do this because we do not wish to assume
reversibility in our formalism. Moreover, our calculations have
also shown that enforcing reversibility can introduce a statistical
bias that dominates the error in any estimates. We give numeri-
cal examples of this phenomenon in Sec. S6 of the supplementary
material.

In Fig. 2(a), we plot root-mean-square error (RMSE) between
the estimated and reference forward committors as a function
of the number of nuisance degrees of freedom. While for low-
dimensional systems, the MSM and the diffusion-map basis give
comparable results, as we increase the dimensionality, the MSM
gives increasingly worse answers. To aid in understanding these
results, we plot example forward committor estimates for the
20-dimensional system in Fig. 3. We see that the diffusion-map
basis manages to capture the general trends in the reference in
Fig. 3(a). In contrast, the MSM basis gives considerably noisier
results.

We also estimate the total reactive flux across the same dataset,
setting C and Cc in (28) to be the sets on either side of the calculated
isocommittor one-half surface [Fig. 2(b)]. The large errors that we
observe in the reactive flux occur due to the nature of the dataset.
If data were collected from a long equilibrium trajectory, it would
not be necessary to estimate π(x) separately, and we could set π(x)
= 1. In that case, provided the number of MSM states was sufficient,
the MSM reactive flux reverts to the direct estimation of the number
of reactive trajectories per unit time. This would give an accurate
reactive flux regardless of the quality of the estimated forward or
backward committors.

VI. ADDRESSING PROJECTION ERROR
THROUGH DELAY EMBEDDING

Our results suggest that improving basis set choice can yield
DGA schemes with better accuracy in higher-dimensional CV
spaces. However, even large CV spaces are considerably lower-
dimensional than the system’s full state space. Consequently, they
may still omit key degrees of freedom needed to describe the long-
time dynamics. In both MSMs and DOEA, this projection error is
often addressed by increasing the lag time of the transition opera-
tor.39,54,71,97 In the long-lag-time limit, bounds on the approximation
error for DOEA show that the scheme gives the correct equilibrium
averages up to projection.29,98 However, MSMs and DOEA cannot

resolve dynamics on time scales shorter than the lag time. This is
reflected in existing DOEA error bounds on the relative error of the
estimate of the subdominant eigenvalue, which do not vanish with
increasing lag time.98 Moreover, whereas changing the lag time does
not affect the eigenfunctions in (6), the equations in Sec. III hold
only for a lag time of ∆t. Using a longer time is effectively making
the approximation

Lf (x) ≈
Ksf (x) − f (x)

s
. (61)

This causes a systematic bias in the estimates of the dynamical quan-
tities discussed in Sec. III. While for small lag times this bias is
likely negligible, it may become large as the lag time increases. For
instance, estimates of the mean first-passage time grow linearly with
s as the lag time goes to infinity.97

Here, we propose an alternative strategy for dealing with pro-
jection error. Rather than looking at larger time lags, we use past
configurations in CV space to account for contributions from the
removed degrees of freedom. This idea is central to the Mori-
Zwanzig formalism.99 Here, we use delay embedding to include his-
tory information. Let ζ(t ) be the projection of Ξ(t ) at time t. We
define the delay-embedded process with d delays as

θ(t)
= (ζ(t), ζ(t−∆t), ζ(t−2∆t), . . . , ζ(t−d∆t)

). (62)

Delay embedding has a long history in the study of determinis-
tic, finite-dimensional systems, where it has been shown that delay
embedding can recapture attractor manifolds up to diffeomor-
phism.100,101 Weaker mathematical results have been extended to
stochastic systems,102,103 although these are not sufficient to guar-
antee its effectiveness in all cases.

Delay embedding has been used previously with dimension-
ality reduction on both experimental104 and simulated chemical
systems105,106 and has also been used in applications of DOEA in
geophysics.66 In Refs. 66 and 107, it was argued that delay embed-
ding can improve statistical accuracy for noise-corrupted and time-
uncertain data. Other methods of augmenting the dynamical pro-
cess with history information have been used in the construction
of MSMs. In Ref. 108, each trajectory was augmented with a label-
ing variable indicating its origin state. In Ref. 97, it was suggested to
write transition probabilities as a function of both the current and
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the preceding MSM state. This corresponds to a specific choice of
basis on a delay embedded process.

Here, we show that delay embedding can be used to improve
dynamical estimates in DGA. To apply DGA to the delay-embedded
process, we must extend the functions h and b in (33) and (34) to the
delay-embedded space. We do this by using the value of the function
on the central time point,

f (θ(t)
) = f (ζ(t−⌊d/2⌋∆t)

), (63)

where ⌊. . .⌋ denotes rounding down to the nearest integer. The
states D and Dc in the delay-embedded space are extended simi-
larly. One can easily show that this preserves dynamical quantities
such as mean first-passage times and committors. The basis set is
then constructed directly on θ, and the DGA formalism is applied as
before.

We test the effect of delay embedding in the presence of pro-
jection error by constructing DGA schemes on the same system as
in Sec. V and taking as our CV space only the y-coordinate. For
this study, we revise our dataset to include 2000 trajectories, each
sampled for 3000 time steps. While using longer trajectories changes
the density such that it is closer to equilibrium, it allows us to test
longer lag times and delay lengths. To ensure that our states are
well-defined in this new CV space, we redefine state A to be the set
{y > 1.15}, and state B to be the set {y < 0.15}. We then estimate the
mean first-passage time into state A, conditioned on starting in state
B at equilibrium,

mB→A =
∫ 1B(x)mA(x)π(x)µ(dx)
∫ 1B(x)π(x)µ(dx)

.

We construct estimates using an MSM basis with varying lag time,
an MSM basis with delay embedding, and a diffusion-map basis
with delay embedding. In Fig. 4, we plot the average mean first-
passage time as a function of the lag time and the trajectory length
used in the delay embedding. We compare the resulting estimates

with an estimate of the mean first-passage time constructed using
our grid-based scheme. In addition, an implied time scale analysis
for the two MSM schemes is given in Sec. S7 of the supplementary
material.

The mean first-passage time estimated from the MSM basis
with the lag time steadily increases as the lag time becomes longer
[Fig. 4(a)], as predicted in Ref. 97. In contrast, the estimates
obtained from delay embedding both converge as the delay length
increases, albeit to a value slightly larger than the reference. We
believe this small error is because we treat the dynamics as hav-
ing a discrete time step, while the reference curve approximates the
mean first-passage time for a continuous-time Brownian dynam-
ics. In particular, the latter includes events in which the system
enters and exits the target state within the duration of a discrete-
time step, but such events are missing from the discrete-time
dynamics.

In all three schemes, we see anomalous behavior as the length
of the lag time or delay length increases. This is due to an increase
in statistical error when the delay length or lag time becomes close
to the length of the trajectory. If each trajectory has N datapoints,
performing a delay-embedding with d delays means that each tra-
jectory only gives N − d samples. When N and d are of the same
order of magnitude, this leads to increased statistical error in the
estimates in Sec. IV C, to the point of making the resulting lin-
ear algebra problem ill-posed. The diffusion-map basis fluctuates
to unreasonable values at long delay lengths, and the MSM basis
fails completely, truncating the curve in Figs. 4(b) and 4(c). Sim-
ilarly, the lagged MSM has an anomalous downturn in the aver-
age mean first-passage time near 26 time units. We give additional
plots supporting this interpretation in Sec. S7 of the supplementary
material.

Finally, we observe that the delay length required for the esti-
mate to converge is substantially smaller than the mean first-passage
time. This suggests that delay embedding can be effectively used on
short trajectories to get estimates of long-time quantities.

FIG. 4. Comparison of methods for dealing with the projection error in an incomplete CV space. In all subplots, we estimate the mean first-passage time from state
B = {y < 0.15} to state A = {y > 1.15} using a DGA scheme on only the y coordinate of the Müller-Brown potential. (a) Estimate constructed using an MSM basis with
increasing lag time in (61), as a function of the lag time. (b) Estimate constructed using an MSM basis, but applying delay embedding rather than increasing the lag time, as
a function of the delay length. (c) Estimate constructed using the diffusion-map basis with delay embedding, as a function of the delay length. In each plot, the symbols show
the mean over 30 identically constructed trajectories, and the shading indicates the standard deviation across trajectories. The black solid line is an estimate of the mean
first-passage time calculated using the reference scheme in the supplementary material, and the dashed error bars represent the standard deviation of the mean first-passage
time over state B.
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VII. APPLICATION TO THE Fip35 WW DOMAIN
To further assess our methods, we now apply them to molecu-

lar dynamics data and seek to evaluate committors and mean first-
passage times. In contrast to the simulations mentioned above, we
do not have accurate reference values and cannot directly calcu-
late the error in our estimates. Instead, we observe that both the
mean first-passage time and forward committor are conditional
expectations and obey the following relations:109

mA(x) = arg min
f (x)

E[(τA − f (x))2
],

q+(x) = arg min
f (x)

E[(1τB<τA − f (x))2
].

This suggests a scheme for assessing the quality of our estimates. If
we have access to long trajectories, each point in the trajectory has
an associated sample of τA and 1τB<τA . We define the two empirical
cost functions

COSTmA =
1
N

N
∑
n=1

(m̄A(xn) − τA,n)
2, (64)

COSTq+ =
1
N

N
∑
n=1

(q̄+(xn) − 1τB<τA ,n)
2. (65)

Here, xn is a collection of samples from a long trajectory, τA ,n is the
time from xn to A, and 1τB<τA,n is one if the sampled trajectory next
reaches B and zero if it next reaches A. The numerical estimates of
the mean first-passage time and committor are written as m̄A and q̄,
respectively. In the limit of N →∞, the true mean first-passage time
and committor would minimize (64) and (65). We consequently
expect lower values of our cost functions to indicate improved esti-
mates. For a perfect estimate, however, these cost functions would
not go to zero. Rather, in the limit of infinite sampling, (64) and (65)
would converge to the variances of τA and 1τB<τA . For the procedure
to be valid, it is important that the cost estimates are not constructed
using the same dataset used to build the dynamical estimates. This
avoids spurious correlations between the dynamical estimate and the
estimated cost.

We applied our methods to the Fip35 WW domain trajecto-
ries described by D. E. Shaw Research in Refs. 110 and 111. The
dataset consists of six trajectories, each of length 100 000 ns with
frames output every 0.2 ns. Each trajectory has multiple folding and
unfolding events, allowing us to evaluate the empirical cost func-
tions. To avoid correlations between the DGA estimate and the cal-
culated cost, we perform a test/train split and divide the data into
two halves. We choose three trajectories to construct our estimate
and use the other three to approximate the expectations in (64) and
(65). Repeating this for each possible choice of trajectories creates a
total of 20 unique test/train splits.

To reduce the memory requirements in constructing the dif-
fusion map kernel matrix, we subsampled the trajectories, keep-
ing every 100th frame. This allowed us to test the scheme over a
broad range of hyperparameters. We expect that in practical appli-
cations a finer time resolution would be used, and any additional
computational expense could be offset by using landmark diffusion
maps.112

To define the folded and unfolded states, we follow Ref. 48 and
calculate rβ1 and rβ1, the minimum root-mean-square-displacement

for each of the two β hairpins, defined as amino acids 7–23 and
18–29, respectively.48 We define the folded configuration as having
both rβ1 < 0.2 nm and rβ2 < 0.13 nm and the unfolded configuration
as having 0.4 nm < rβ1 < 1.0 nm and 0.3 nm < rβ2 < 0.75 nm. For
convenience, we refer to these states as A and B throughout this sec-
tion. We then attempt to estimate the forward committor between
the two states and the mean first-passage time into A using the same
methods as in Sec. VI.

We take as our CVs the pairwise distances between every
other α-carbon, leading to a 153-dimensional space. In previous
studies, dimensionality-reduction schemes such as TICA have been
applied prior to MSM construction. We choose not to do this,
as we are interested in the performance of the schemes in large
CV spaces. This also helps control the number of hyperparame-
ters and algorithm design choices. Indeed, our tests suggest that,
while using TICA with well-chosen hyperparameters can lead to
improvements for both basis sets, the qualitative trends in our results
remain unchanged. However, we think the interaction between
dimensionality-reduction schemes and families of basis sets merits
future investigation.

Our results are given in Fig. 5. In Figs. 5(a) and 5(b), we give the
mean value of the cost for the mean first-passage time and forward
committor over all test/train splits, as calculated using 200 basis
functions for each algorithm. The number of basis functions was
chosen to give the best result for the MSM scheme with increasing
lag over any lag time, although we see only very minor differences in
behavior for larger basis sets. The large standard deviations primar-
ily reflect variation in the cost across different test/train splits, rather
than any difference between the methods. This suggests the presence
of large numerical noise in our results.

To get a more accurate comparison, we instead look at the
expected improvement in cost between schemes for a given test/train
split. To quantify whether an improvement occurs, we first deter-
mine the best parameter choice for the MSM basis with increasing
lag. We estimate the cost for the MSM basis with delay embedding
and for the diffusion-map basis, and calculate the difference in cost
vs the lagged MSM scheme for each test/train split. We then aver-
age and calculate the standard deviation over pairs, and plot the
results in Figs. 5(c)–5(f). As the difference is calculated against the
best parameter choice for the lagged MSM scheme, they are intrin-
sically conservative: in practice, one should not expect to have the
optimal lagged MSM parameters.

In our numerical experiments, we see that the diffusion map
seems to give the best results for relatively short delay lengths. How-
ever, the diffusion-map basis performs progressively worse as the
delay length increases. The mechanism causing this loss in accu-
racy requires further analysis. This tentatively suggests the use of the
diffusion-map basis for datasets consisting of very short trajectories,
where using long delays may be infeasible. In contrast, our results
with the delay-embedded MSM basis are more ambiguous. For the
mean first-passage time, we do not see significant improvement
over the results from the lagged MSM results. We do see noticeable
improvement in the estimated forward committor probability as the
delay length increases. However, we observe that the delay lengths
required to improve upon the diffusion map result are comparable
in magnitude to the average time required for the trajectory to reach
either the A or B states. Indeed, we only see an improvement over the
diffusion-map result at a delay length of 180 ns, and we observe that
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FIG. 5. Results from a DGA calculation on a dataset of six long folding and unfolding trajectories of the Fip35 WW domain. [(a) and (d)] The root cost in the mean first-passage
time and forward committor, respectively, calculated using an MSM basis with increasing lag time, an MSM basis with delay embedding, and diffusion map basis with delay
embedding, averaged over all test/train splits. [(b), (c), (e), and (f)] Difference in root cost relative to the best parameter choice for the estimate constructed using the MSM
basis with increasing lag time. Negative values are better. (b) Difference in cost for the mean first-passage time estimated with an MSM basis with delay embedding. (c)
The same as in (b) but with the diffusion map basis instead. (e) Difference in cost for the committor estimated with an MSM basis with delay embedding. (f) The same as in
(e) but with the diffusion map basis instead. In all plots, the symbols are the average over test/train splits, and the shading indicates the standard deviation across test/train
splits.

the longest the trajectory spends outside of both state A and state
B is 223 ns. This negates any advantage of using datasets of short
trajectories.

Caution is warranted in interpreting these results. We see large
variances between different test/train splits, suggesting that despite
having 300 µs of data in each training dataset, we are still in a rela-
tively data-poor regime. Similarly, we cannot make an authoritative
recommendation for any particular scheme for calculating dynami-
cal quantities without further research. Such a study would not only
require more simulation data but also a comparison of multiple
clustering and diffusion map schemes across several hyperparam-
eters and their interaction with various dimensionality-reduction
schemes. We leave this task for future work. However, our initial
results are promising, suggesting that further development of DGA
schemes and basis sets is warranted.

VIII. CONCLUSIONS
In this paper, we introduce a new framework for estimating

dynamical statistics from trajectory data. We express the quantity
of interest as the solution to an operator equation using the gen-
erator or one of its adjoints. We then apply a Galerkin approxi-
mation, projecting the unknown function onto a finite-dimensional
basis set. This allows us to approximate the problem as a sys-
tem of linear equations, whose matrix elements we approximate
using Monte Carlo integration on dynamical data. We refer to this

framework as Dynamical Galerkin Approximation (DGA). These
estimates can be constructed using collections of short trajectories
initialized from relatively arbitrary distributions. Using a basis set
of indicator functions on nonoverlapping sets recovers MSM esti-
mates of dynamical quantities. Our work is closely related to existing
work on estimating the eigenfunctions of dynamical operators in a
data-driven manner.

To demonstrate the utility of alternative basis sets, we intro-
duce a new method for constructing basis functions based on dif-
fusion maps. Results on a toy system show that this basis has the
potential to give improved results in high-dimensional CV spaces.
We also combine our formalism with delay-embedding, a tech-
nique for recovering degrees of freedom omitted in constructing a
CV space. Applying it to an incomplete, one-dimensional projec-
tion of our test system, we see that delay embedding can improve
on the current practice of increasing the lag time of the dynamical
operator.

We then applied the method to long folding trajectories of the
Fip35 WW domain to study the performance of the schemes in
a large CV space on a nontrivial biomolecule. Our results suggest
that the diffusion-map basis gives the best performance for short
delay times, giving results that are as good or better than the best
time-lagged MSM parameter choice. Moreover, our results suggest
that combining the MSM basis with delay embedding gives promis-
ing results, particularly, for long delay lengths. However, long delay
lengths are required to see an improvement over the diffusion-map
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basis, potentially negating any computational advantage in using
short trajectories to estimate committors and mean first-passage
times.

We believe our work raises new theoretical and algorithmic
questions. Most immediately, we hope our preliminary numeri-
cal results motivate the need for new approaches to building basis
sets and guess functions obeying the necessary boundary con-
ditions. Further theoretical work is also required to assess the
validity of using delay embedding in our schemes. Finally, we
believe it is worth searching for connections between our work,
VAC and VAMP theory,34,54,55,70,71 and earlier approaches for
learning dynamical statistics.12,13,89 In particular, a variational refor-
mulation of the DGA scheme would allow substantially more
flexible representation of solutions. With these further develop-
ments, we believe DGA schemes have the potential to give further
improved estimates of dynamical quantities for difficult molecular
problems.

SUPPLEMENTARY MATERIAL

Additional theoretical and numerical support for our argu-
ments is given in the supplementary material. We first show how
MSM estimates of dynamical quantities can be derived using DGA.
We then detail the specific procedure used to construct the diffu-
sion map kernel and describe our out-of-sample extension proce-
dure. This is followed by an adaptation of the reactive flux and
transition path theory rate to discrete-time Markov chains. We
then describe how we compute the reference values for dynami-
cal quantities on the Müller-Brown potential. We next give addi-
tional plots justifying our MSM hyperparameter choices in Sec. V:
we explain our choice for the number of MSM states and show
that enforcing reversibility can cause substantial statistical bias in
the estimates of dynamical quantities. Finally, we give additional
plots examining the convergence of the delay embedded estimates in
Sec. VI.
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